Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 181: 199-210, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643515

RESUMO

Supercritical CO2 (scCO2) extraction assisted by complexing copolymers is a promising process to recover valuable metals from lithium-ion batteries (LIBs). CO2, in addition to being non-toxic, abundant and non-flammable, allows an easy separation of metal-complexes from the extraction medium by depressurization, limiting the wastewater production. In this study, CO2-philic gradient copolymers bearing phosphonic diacid complexing groups (poly(vinylbenzylphosphonic diacid-co-1,1,2,2-tetrahydroperfluorodecylacrylate), p(VBPDA-co-FDA)) were synthesized for the extraction of lithium and cobalt from LiCoO2 cathode material. Notably, the copolymer was able to play the triple role of leaching agent, complexing agent and surfactant. The proof of concept for leaching, complexation and extraction was achieved, using two different extraction systems. A first extraction system used aqueous hydrogen peroxide as reducing agent while it was replaced by ethanol in the second extraction system. The scCO2 extraction conditions such as extraction time, temperature, functional copolymer concentration, and the presence of additives were optimized to improve the metals extraction from LiCoO2 cathode material, leading to an extraction efficiency of Li and Co up to ca. 75 % at 60 °C and 250 bar.

2.
Polymers (Basel) ; 16(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543370

RESUMO

Several researchers have examined the interest in using a thermoplastic to increase thermoset polymers' shock resistance. However, fewer studies have examined the nature of the mechanisms involved between both kinds of polymers. This was the objective of our work, which was carried out using a gradual approach. First, we describe the synthesis of a poly(ether ether ketone) oligomer (oPEEK) with hydroxyl terminations from the reaction of hydroquinone and 4,4'-difluorobenzophenone in N-methyl-2-pyrrolidone. Then, the main physicochemical properties of this oligomer were determined using different thermal analyses (i.e., differential scanning calorimetry (DSC), thermogravimetric (ATG), and thermomechanical analyses) to isolate its response alone. The chemical characterisation of this compound using conventional analytical chemistry techniques was more complex due to its insolubility. To this end, it was sulfonated, according to a well-known process, to make it soluble and enable nuclear magnetic resonance (NMR) and size exclusion chromatography (SEC) experiments. Additional information about the structural and chemical characteristics of the oligomer and its average molecular weight could thus be obtained. The synthesis of an oligoPEEK with α,ω-hydroxyl end-groups and a molecular weight of around 5070 g/mol was thus confirmed by NMR. This value was in accordance with that determined by SEC analysis. Next, the reaction of oPEEK with an epoxy prepolymer was demonstrated using DSC and dynamic rheometry. To this end, uncured mixtures of epoxy prepolymer (DGEBA) with different proportions of oPEEK (3, 5, 10 and 25%) were prepared and characterised by both techniques. Ultimately, the epoxy-oPEEK mixture was cured with isophorone diamine. Finally, topological analyses were performed by atomic force microscopy (AFM) in tapping mode to investigate the interface quality between the epoxy matrix and the oPEEK particles indirectly. No defects, such as decohesion areas, microvoids, or cracks, were observed between both systems.

3.
Molecules ; 28(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687180

RESUMO

Precious metals such as palladium (Pd) have many applications, ranging from automotive catalysts to fine chemistry. Platinum group metals are, thus, in massive demand for industrial applications, even though they are relatively rare and belong to the list of critical materials for many countries. The result is an explosion of their price. The recovery of Pd from spent catalysts and, more generally, the development of a circular economy process around Pd, becomes essential for both economic and environmental reasons. To this aim, we propose a sustainable process based on the use of supercritical CO2 (i.e., a green solvent) operated in mild conditions of pressure and temperature (p = 25 MPa, T = 313 K). Note that the range of CO2 pressures commonly used for extraction is going from 15 to 100 MPa, while temperatures typically vary from 308 to 423 K. A pressure of 25 MPa and a temperature of 313 K can, therefore, be viewed as mild conditions. CO2-soluble copolymers bearing complexing groups, such as pyridine, triphenylphosphine, or acetylacetate, were added to the supercritical fluid to extract the Pd from the catalyst. Two supported catalysts were tested: a pristine aluminosilicate-supported catalyst (Cat D) and a spent alumina supported-catalyst (Cat A). An extraction conversion of up to more than 70% was achieved in the presence of the pyridine-containing copolymer. The recovery of the Pd from the polymer was possible after extraction, and the technological and economical assessment of the process was considered.

4.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808744

RESUMO

The synthesis and characterization of a platform of novel functional fluorinated gradient copolymers soluble in liquid and supercritical CO2 is reported. These functional copolymers are bearing different types of complexing units (pyridine, triphenylphosphine, acetylacetate, thioacetate, and thiol) which are well-known ligands for various metals. They have been prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization in order to obtain well-defined gradient copolymers. The copolymers have been characterized by proton nuclear magnetic resonance (1H-NMR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, thermal gravimetric analysis (TGA), dynamical scanning calorimetry (DSC) and cloud point measurements in dense CO2. All the investigated metal-complexing copolymers are soluble in dense CO2 under mild conditions (pressure lower than 30 MPa up to 65 °C), confirming their potential applications in processes such as metal-catalyzed reactions in dense CO2, metal impregnation, (e.g., preparation of supported catalysts) or metal extraction from various substrates (solid or liquid effluents). Particularly, it opens the door to greener and less energy-demanding processes for the recovery of metals from spent catalysts compared to more conventional pyro- and hydro-metallurgical methods.

5.
ACS Macro Lett ; 11(1): 140-148, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574795

RESUMO

We designed and synthesized high χ-low N-maltoheptaose-(triazolium+/N(SO2CF3)2-)-polyisoprene-(triazolium+/N(SO2CF3)2-)-maltoheptaose ABA triblock elastomers featuring triazolium+/N(SO2CF3)2- (TFSI-) counteranion ionic interfaces separating their constituting polymeric sub-blocks. Spin-coated and solvent-vapor-annealed (SVA) MH1.2k-(T+/TFSI-)-PI4.3k-(T+/TFSI-)-MH1.2k thin films demonstrate interface-induced charge cohesion through ca. 1 nm "thick" ionic nanochannels which facilitate the self-assembly of a perpendicularly aligned lamellar structure. Atomic force microscopy (AFM) and (grazing-incidence) small-angle X-ray scattering ((GI)SAXS) characterizations of MH1.2k-(T+/TFSI-)-PI4.3k-(T+/TFSI-)-MH1.2k and pristine triBCP analogous thin films revealed sub-10 nm block copolymer (BCP) self-assembly and unidirectionally aligned nanostructures developed over several µm2 areas. Solvated TFSI- counterions enhance the oligosaccharide sub-block packing during SVA. The overall BCP phase behavior was mapped through SAXS characterizations comparing di- vs triblock polymeric architectures, a middle PI sub-block with two different molecular masses, and TFSI- or I- counteranion effects. This work highlights the benefits of inducing single-point electrostatic interactions within chemical structures of block copolymers to master the long-range self-assembly of prescribed morphologies.


Assuntos
Elastômeros , Polímeros , Triazóis/química , Butadienos/química , Elastômeros/química , Gases/química , Hemiterpenos/química , Oligossacarídeos , Polímeros/química , Espalhamento a Baixo Ângulo , Solventes/química , Difração de Raios X
6.
Soft Matter ; 13(25): 4507-4519, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28584886

RESUMO

A series of amphiphilic photo-responsive heterografted copolymers have been successfully synthesized. The random copolymers were composed of a methacrylate backbone, with various compositions of hydrophilic oligomeric 2-methyl-2-oxazoline side chains (OMOx) and hydrophobic long alkyl chains terminated by a coumarin moiety (Cm). Using dynamic (DLS) and static light scattering (SLS), and transmission electron microscopy (TEM), their self-assembling behavior was studied in water using the nanoprecipitation method. Depending on the system, one, two or three particle size distributions co-exist in solution. However, DLS measurements showed that monomodal and slightly polydisperse self-assemblies were obtained with the more hydrophobic copolymers (i.e., 85% of hydrophobic monomers with a long alkyl chain terminated by a coumarin moiety (MCm) per molecule) with hydrodynamic diameters ranging from ca. 130 to 300 nm. Morphological information on these self-assembly structures was obtained using SLS: a Gaussian behavior has thus been evidenced. Finally, these heterografted copolymers were illuminated using UV light at λ = 350 nm inducing photo-crosslinking of the coumarin units. The influence of UV illumination on the thus-formed nanoparticles was investigated by carrying out complementarily DLS-measurements and UV spectroscopy.

7.
Langmuir ; 32(18): 4538-45, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27054350

RESUMO

This paper discusses the self-assembly of oligosaccharide-containing block copolymer and the use of ultraviolet (UV) to obtain nanoporous glyco-nanoparticles by photodegradation of the synthetic polymer block. Those glyco-nanoparticles consisting of oligosaccharide-based shell and a photodegradable core domain were obtained from the self-assembly of maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA48) using the nanoprecipitation protocol. MH-b-PMMA48 self-assembled into well-defined spherical micelles (major compound) with a hydrodynamic radius (Rh) of ca. 10 nm and also into large compound micellar aggregates (minor compound) with an Rh of ca. 65 nm. The oligosaccharide shells of these glyco-nanoparticles were cross-linked through the Michael-type addition of divinyl sulfone under dilute conditions to minimize the intermicellar cross-linking. The core domain photodegradation of the cross-linked glyco-nanoparticles was induced under exposure to 254 nm UV radiation, resulting in porous glyco-nanoparticles with an Rh of ca. 44 nm. The morphology of the cross-linked shell and the core photodegradation of these glyco-nanoparticles were characterized using static light scattering, dynamic light scattering, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, field-emission gun-scanning electron microscopy, and transmission electron microscopy. The innovative aspect of this approach concerns the fact that after removing the PMMA domains the porous nanoparticles are mostly composed of biocompatible and nontoxic oligosaccharides.

8.
Biomacromolecules ; 16(7): 2012-24, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25974198

RESUMO

The synthesis and the solution-state self-assembly of the "hybrid" diblock copolymers, maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA), into large compound micelles (LCMs) and reverve micelle-type nanoparticles, are reported in this paper. The copolymers were self-assembled in water and acetone by direct dissolution method, and the morphologies of the nanoparticles were investigated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), atomic force microscopy (AFM), proton nuclear magnetic resonance ((1)H NMR), and fluorescence spectroscopy as a function of the volume fraction of the copolymer hydrophobic block, copolymer concentration, stirring speed, and solvent polarity. The DLS measurements and TEM images showed that the hydrodynamic radius (Rh) of the LCMs obtained in water increases with the copolymer concentration. Apart from that, increasing the stirring speed leads to polydispersed aggregations of the LCMs. On the other hand, in acetone, the copolymers self-assembled into reverse micelle-type nanoparticles having Rh values of about 6 nm and micellar aggregates, as revealed the results obtained from DLS, AFM, and (1)H NMR analyses. The variation in micellar structure, that is, conformational inversion from LCMs to reverse micelle-type structures in response to polarity of the solvent, was investigated by apparent water contact angle (WCA) and (1)H NMR analyses. This conformational inversion of the nanoparticles was further confirmed by encapsulation and release of hydrophobic guest molecule, Nile red, characterized by fluorescence spectroscopy.


Assuntos
Glucanos/química , Nanopartículas/química , Polietilenoglicóis/química , Polimetil Metacrilato/química , Difusão Dinâmica da Luz , Espectroscopia de Ressonância Magnética , Micelas , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Água
9.
Soft Matter ; 10(38): 7545-57, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25109365

RESUMO

Methacrylamide-based oligomers bearing phosphonate pending groups at the end of a long alkyl chain and originating from undecylenic acid synthons were subjected to direct oligomer dissolution. Size improvement towards much smaller objects was reached using the nanoprecipitation method: the oligomers were first dissolved in an organic solvent, and then precipitated in water using a syringe pump. Dynamic light scattering (DLS) showed phosphorous containing monomodal and quite narrow-sized self-assemblies in water with hydrodynamic diameters (DH) ranging from 80 to 280 nm (depending on the oligomer system). Direct visualization using transmission electron microscopy (TEM) and atomic force microscopy (AFM) showed filled and almost individual particles with spherical shape. They were considerably shrunk, suggesting the highly swollen character of the self-assemblies in suspension. Morphological information on the multi-scale self-assembled structures was complementarily obtained using static light scattering (SLS). Thus, at a low length-scale, highly segregated sub-units having sharp boundaries surrounded by water (Porod behaviour) were observed, whereas at a high length-scale random non-compact organization of these sub-units via weak interactions was found, forming a chaplet-like structure (Gaussian behaviour). Furthermore, the pH-sensitiveness of the suspensions obtained after the nanoprecipitation method was studied. Particularly, at pH = 12, the characteristic size drastically increased within few hours from typically ∼280 nm to 2 µm due to electrostatic repulsion between deprotonated hydroxyl groups. At longer times, the observed peculiar behaviour corresponded to the model of diffusion-limited cluster aggregation (DLCA) where the particles stuck easily together upon contact [continuation of the article by C. Bouilhac, C. Travelet, A. Graillot, S. Monge, R. Borsali and J.-J. Robin, Polym. Chem., 2014, 5, 2756-2767].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...